Titanium is widely distributed and constitutes 0.44 percent of Earth’s crust. The metal is found combined in practically all rocks, sand, clay, and other soils. It is also present in plants and animals, natural waters and deep-sea dredgings, and meteorites and stars. The two prime commercial minerals are ilmenite and rutile. The metal was isolated in pure form (1910) by the metallurgist Matthew A. Hunter by reducing titanium tetrachloride (TiCl4) with sodium in an airtight steel cylinder.
Pure titanium is ductile, about half as dense as iron and less than twice as dense as aluminum; it can be polished to a high lustre. The metal has a very low electrical and thermal conductivity and is paramagnetic (weakly attracted to a magnet). Two crystal structures exist: below 883 °C (1,621 °F), hexagonal close-packed (alpha); above 883 °C, body-centred cubic (beta). Natural titanium consists of five stable isotopes: titanium-46 (8.0 percent), titanium-47 (7.3 percent), titanium-48 (73.8 percent), titanium-49 (5.5 percent), and titanium-50 (5.4 percent).
Titanium is important as an alloying agent with most metals and some nonmetals. Some of these alloys have much higher tensile strengths than does titanium itself. Titanium has excellent corrosion-resistance in many environments because of the formation of a passive oxide surface film.